
A Brief History of Exploitation

Techniques & Mitigations on Windows

By Matt Miller

2

• Introduction

– What are exploit mitigations?

• Evolution of exploit mitigations on

Windows

– /GS, SafeSEH, DEP, ASLR

• A look toward the future

Agenda

3

• Software vulnerabilities are common

• Reliable exploitation techniques exist

– Stack-based buffer overflows

– Heap overflows (not covered due to time)

• Exploit mitigations act as

countermeasures to these techniques

Overview

4

• Prevent or impede exploitation

• Patching the vulnerability

– The only guaranteed mitigation (if done right)

• Workarounds

– Disabling the vulnerable service

• Generic mitigations

– Buffer overflow prevention

What are exploit mitigations?

5

THE LOGICAL EVOLUTION

Exploit techniques & mitigations

6

Starting from the beginning

Local

Variables

Saved

EBP

Saved

EIP
Arguments

Stack grows toward lower addresses

Common structure of an x86 stack frame

7

Exploit: Overwrite saved EIP

Local

Variables

Saved

EBP

Saved

EIP
Arguments

Buffer overflow

• Common stack-based buffer overflow[7]

• Return address is overwritten with address of

shellcode

8

Mitigation: Stack canaries (/GS)

Local

Variables

Saved

EBP

Saved

EIP
Arguments

GS

Cookie

0xa47c10390x0012ef040x7601148c

0x414141410x414141410x7843110b

• Compiler change introduced in VS2002[7]

• Canary is validated before a function returns

• Mismatching canary leads to process termination

9

Exploit: Overwrite variables

• Canary is only checked at function return

• Corrupt arguments or locals may be used before return

• Attacker could overwrite canary or other memory[2,8]

void vulnerable(char *in, char *out) {

char buf[256];

strcpy(buf, in); // overflow!

strcpy(out, buf); // out is corrupt

return; // canary checked

}

10

Mitigation: /GS improvements

Local

Variables

Saved

EBP

Saved

EIP

Arguments

(Not referenced after

copying to locals)

GS

Cookie

• “Safe” copies of arguments made as locals

• Arrays positioned directly adjacent to GS cookie

• Corruption of dangerous locals and arguments is

less likely

Arguments

&

Pointers

Arrays

Buffer overflow

11

Exploit: SEH Overwrite

• Structured Exception Handler (SEH) overwrite[1]

– Handler overwritten during overflow

– Called when an exception is generated

• Exception can be generated before the canary is

checked

Local

Variables
…

GS

Cookie

Exception

Registration

Record

Next Handler

Buffer overflow

void vulnerable(char *ptr){

char buf[128];

try {

strcpy(buf, ptr);

… exception …

} except(…) { }

}

12

Exploit: SEH Overwrite (cont’d)

N H

N H

N H

app!_except_handler4

k32!_except_handler4

ntdll!_except_handler4

0xffffffff

Normal SEH Chain

N H 0x7c1408ac

0x414106eb

Corrupt SEH Chain

An exception will cause 0x7c1408ac to

be called as an exception handler as:

EXCEPTION_DISPOSITION Handler(

PEXCEPTION_RECORD Exception,

PVOID EstablisherFrame,

PCONTEXT ContextRecord,

PVOID DispatcherContext);

pop eax

pop eax

ret

13

Mitigation: SafeSEH

• VS2003 compiler change (/SafeSEH)[9]

• Binaries are compiled with a table of safe exception

handlers

• Exception dispatcher checks if handlers are safe before

calling

Safe SEH Handler Invalid SEH Handler

app!_except_handler4 app!eh1

app!eh2

app!_except_handler4

…Valid

app!_main+0x1c

Not found in table

?

14

Exploit: SEH Overwrite Part II

• SafeSEH only works if all binaries in a process
are compiled with it[4]

• Handler can be pointed into a binary that does

not have a safe exception handler table

N H

Compiled with

/SAFESEH

Not compiled

With /SAFESEH

15

Mitigation: Dynamic SafeSEH

• Dynamic protection against SEH overwrites[4]

– No compile time hints required

• Symbolic Validation frame inserted as final entry in chain

• Corrupt Next pointers prevent traversal to validation frame

N H

N H

app!_except_handler4

k32!_except_handler4

N H sehprot!_validation_eh

N H app!_main+0x1c

0x41414141

Can’t reach validation frame!

Valid SEH Chain Invalid SEH Chain

?

16

Recap: GS and SafeSEH

• GS and SafeSEH are solid mitigations for

stack-based buffer overflows

• Applications must be recompiled

– With the exception of dynamic SafeSEH

• Additional runtime mitigations are needed

– Protection for legacy & 3rd party applications

17

Mitigation: Hardware DEP (NX)

Local

Variables

Saved

EBP

Saved

EIP
Arguments

• Exploits typically attempt to run shellcode stored in
writable memory regions[10]

• Enforcing non-executable pages prevents execution of

arbitrary shellcode

• Binary must indicate support, VS2005 sets flag

Stack

Layout

Padding
Address

of
jmp esp

Shellcode
Exploit

Buffer

Buffer overflow

No-exec stack

18

Exploit: ret2libc

• NX stack and heap prevents arbitrary code execution

• Library code is executable and can be abused[11]

• Example: return into a library function with a fake call

frame

Local

Variables

Saved

EBP

Saved

EIP
Arguments

Stack

Layout

Padding
Address

of
system

Fake

Return

Address

Exploit

Buffer

Address

of
“cmd”

Buffer overflow

19

Exploit: ret2libc (cont’d)

• Windows makes extensive use of stdcall

• Caller pushes arguments

• Callee pops arguments with retn

• Allows multiple functions to be chained in ret2libc

Address

of
VirtualProtect

Address

of
jmp esp

Address

of

shellcode

Size

of

shellcode

RWX
Writable

address
shellcode

1 2 3
Return from

vulnerable

function

Entry to
VirtualProtect

Return from
VirtualProtect

20

• Returning to VirtualProtect requires

the ability to use NULL bytes

– Often impossible (string-related overflows)

• Windows has an API to disable NX for an

entire process

– NtSetInformationProcess[0x22]

• ntdll calls this API & we can abuse it[3]

Exploit: ret2libc (cont’d)

21

Exploit: NtSetInformationProcess

Address

of
NtdllOkayToLockRoutine

(0x7c952080)

Address

Of
LdrpCheckNXCompatibility+0x13

(0x7c91d3f8)

Address

of
jmp esp

(0x1b4c7814)

shl

code

4

byte

pad

z+4

byte

pad

ESP

n

byte

pad

app!vulnerable+0x1c:

104713a4 c20400 retn 4  Return to NtdllOkayToLockRoutine

and add 4 to esp (n=4)

22

Exploit: NtSetInformationProcess

Address

Of
LdrpCheckNXCompatibility+0x13

(0x7c91d3f8)

Address

of
jmp esp

(0x1b4c7814)

shl

code

4

byte

pad

z+4

byte

pad

ESP

ntdll!NtdllOkayToLockRoutine:

7c952080 b001 mov al,0x1  Set al to 1

7c952082 c20400 ret 0x4  Return to

LdrpCheckNxCompatibility+0x13

23

Exploit: NtSetInformationProcess

Address

of
jmp esp

(0x1b4c7814)

shl

code

z+4

byte

pad

ntdll!LdrpCheckNXCompatibility+0x13:

7c91d3f8 3c01 cmp al,0x1  al is equal to 1

7c91d3fa 6a02 push 0x2  Set esi to 2

7c91d3fc 5e pop esi

7c91d3fd 0f84b72a0200 je 7c93feba  ZF=1, jump

…

7c93feba 8975fc mov [ebp-0x4],esi  Set [ebp-4] to 0x2

7c93febd e941d5fdff jmp 7c91d403

…

7c91d403 837dfc00 cmp [ebp-0x4],0x0  [ebp-4] is not 0

7c91d407 0f8560890100 jne 7c935d6d  ZF=0, jump

24

Exploit: NtSetInformationProcess

7c935d6d 6a04 push 0x4  Length := 4

7c935d6f 8d45fc lea eax,[ebp-0x4]

7c935d72 50 push eax  &[ebp-4] (0x2)

7c935d73 6a22 push 0x22  ProcessExecuteFlags

7c935d75 6aff push 0xff  NtCurrentProcess()

7c935d77 e8b188fdff call ntdll!ZwSetInformationProcess  Invoke

7c935d7c e9c076feff jmp 7c91d441  NX is now disabled

…

7c91d441 5e pop esi

7c91d442 c9 leave

7c91d443 c20400 ret 0x4  Return to jmp esp then

jump into shellcode

Address

of
jmp esp

(0x1b4c7814)

shl

code

z+4

byte

pad

ESP

ZwSetInformationProcess(

NtCurrentProcess(), ProcessExecuteFlags,

&ExecuteFlags, sizeof(ULONG));

25

Mitigation: Permanent flag

• Boot flag can force all applications to run

with NX enabled (AlwaysOn)[10]

• Processes can prevent future updates to

execute flags

– NtSetInformationProcess[22] with flag 0x8

• Does not mitigate return into VirtualProtect

26

• Memory segments can be marked non-

executable with hardware support
– Stacks, heaps, etc

• Ret2libc can run malicious code without using

shellcode

• It can also be used to disable NX and run

shellcode
– VirtualProtect

– NtSetInformationProcess

Recap: DEP (NX)

27

A common thread

What is common about all of the

exploitation techniques

discussed so far?

28

A common thread

• Each technique generally relies on

address space knowledge

– Address used for a return address

– Address used for an SEH handler

– Address used for a library routine (ret2libc)

• What if the address space was

unpredictable?

29

Mitigation: ASLR

• Address Space Layout Randomization
(ASLR)[12]

– Images must be compiled with /dynamicbase

• Randomizes memory locations

– Addresses are no longer predictable

app.exe

user32.dll

ssleay32.dll

ntdll.dll

app.exe

user32.dll

ssleay32.dll

ntdll.dll

app.exe

user32.dll

ssleay32.dll

ntdll.dll

Boot 1 Boot 2 Boot 3

process

address

space

30

Exploit: Partial overwrite

• Only the high-order two bytes are randomized in

image mappings

• Low-order two bytes can be overwritten to return

into another location within a mapping

– Overwriting 0x1446047c with 0x14461846

• Target address can be used to pivot

Local

Variables

Saved

EBP

Saved

EIP

Buffer overflow

memcpy(

dest,  Stack buf

src,  Controlled

length);  Controlled

31

Exploit: non-reloc executables

• Not all binaries are compiled with relocation

information

– Executables often don’t have relocations (/fixed:yes)

• ASLR is only effective if all regions are

randomized

app.exe

user32.dll

ssleay32.dll

ntdll.dll

app.exe

user32.dll

ssleay32.dll

ntdll.dll

app.exe

user32.dll

ssleay32.dll

ntdll.dll

Boot 1 Boot 2 Boot 3

process

address

space

32

Exploit: Brute force

• Vista ASLR randomizes most DLLs once

per-boot

• Brute forcing addresses may be possible

– No “forking” daemons in Windows

– Vista service restart policy limits this

• Not as effective against Windows ASLR in

most cases

33

Exploit: Information disclosure

• Application bugs may leak address space

information

• Can be used to construct reliable return

addresses

• Knowledge of image file version is all that

is needed

34

Recap: ASLR

• Address space becomes unpredictable

• Exploits cannot assume the location of

opcodes and other values

• Still, it has its weaknesses

– Partial overwrite

– Brute force

– Information disclosure

35

THE CHRONOLOGICAL

EVOLUTION

Exploit techniques & mitigations

36

Chronology on Windows

• Attack: Smashing the stack (Aug, 1996)

• Mitigation: Visual Studio 2002 (Feb, 2002)

– First release of /GS[7]

• Attack: Overwrite variables[2] (Feb, 2002)

• Attack: SEH Overwrite[1] (Sep, 2003)

37

Chronology on Windows

• Mitigation: Visual Studio 2003 (Nov, 2003)

– Arrays placed adjacent to GS cookie

– /SAFESEH added[9]

• XP SP2 released (Aug, 2004)

– Windows compiled with /GS and /SAFESEH

– DEP

• Attack: Bypass NX[3] (Sep, 2005)

38

Chronology on Windows

• Mitigation: Visual Studio 2005 (Nov, 2005)

– Arguments copied to safe locals for /GS

• Mitigation: ASLR (Nov, 2006)

– Included with Windows Vista

– Attacks against ASLR already existed

• Attack: Weak GS entropy[5] (May, 2007)

39

WRAP UP

Exploit techniques & mitigations

40

Looking toward the future

• Vista has formidable mitigations

– GS, SafeSEH, Heap cookies, DEP, ASLR

• Easily exploitable issues have been found

– Alexander Sotirov’s write-up on ANI

• Third parties have been slow to adopt

• Unlikely Vista will have a wormable flaw

41

Questions?

42

References

[1] Litchfield, David. Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft Windows

20003 Server. http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf.

[2] Ren, Chris et al. Microsoft Compiler Flaw Technical Note.

http://www.cigital.com/news/index.php?pg=art&artid=70.

[3] skape, Skywing. Bypassing Windows Hardware-enforced DEP.

http://www.uninformed.org/?v=2&a=4&t=sumry.

[4] skape. Preventing the Exploitation of SEH Overwrites. http://www.uninformed.org/?v=5&a=2&t=sumry.

[5] skape. Reducing the Effective Entropy of GS Cookies. http://www.uninformed.org/?v=7&a=2&t=sumry.

[6] Aleph1. Smashing the Stack for Fun and Profit.

http://www.phrack.org/issues.html?issue=49&id=14#article.

[7] Microsoft. /GS Compiler Switch.

http://msdn2.microsoft.com/en-us/library/8dbf701c(VS.80).aspx.

[8] Whitehouse, Ollie. Analysis of GS Protections in Microsoft Windows Vista.

http://www.symantec.com/avcenter/reference/GS_Protections_in_Vista.pdf.

[9] Microsoft. /SAFESEH Compiler Switch. http://msdn2.microsoft.com/en-us/library/9a89h429(VS.80).aspx.

[10] Microsoft. A detailed description of DEP. http://support.microsoft.com/kb/875352.

[11] Wikipedia. Return-to-libc attack. http://en.wikipedia.org/wiki/Return-to-libc_attack.

[12] Wikipedia. Address Space Layout Randomization (ASLR). http://en.wikipedia.org/wiki/ASLR.

http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.cigital.com/news/index.php?pg=art&artid=70
http://www.uninformed.org/?v=2&a=4&t=sumry
http://www.uninformed.org/?v=5&a=2&t=sumry
http://www.uninformed.org/?v=7&a=2&t=sumry
http://www.phrack.org/issues.html?issue=49&id=14
http://msdn2.microsoft.com/en-us/library/8dbf701c(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/8dbf701c(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/8dbf701c(VS.80).aspx
http://www.symantec.com/avcenter/reference/GS_Protections_in_Vista.pdf
http://msdn2.microsoft.com/en-us/library/9a89h429(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/9a89h429(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/9a89h429(VS.80).aspx
http://support.microsoft.com/kb/875352
http://en.wikipedia.org/wiki/Return-to-libc_attack
http://en.wikipedia.org/wiki/Return-to-libc_attack
http://en.wikipedia.org/wiki/Return-to-libc_attack
http://en.wikipedia.org/wiki/Return-to-libc_attack
http://en.wikipedia.org/wiki/Return-to-libc_attack
http://en.wikipedia.org/wiki/ASLR

